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The general problem of asymptotlic stabllizatlion of steady-state motions of
nonlinear control systems {1] was examined in {2]. In this paper, conditions
of stabllity are established in the first approximation for nonstationary
systems in one particular case,

We examine the following control system:
dy /dt = f(t, 9, 0) (y E{R"} 0o E{R™) )

where S 1s a given vector function, y 1is the vector of phase coordinates
of the system. Vector w 1s the control which we consider unaffected by
disturbances. Vector y 1s subject to small perturbations x , so that

in (1) Vi =y (0 + 2 1) (2)
Here y*(t) 1s a given motion generated by the control w*(t) . We let
=0 — o* () &)

Substituting (2) and (3) into Equation (1) and expanding the right-hand
side with respect to quantities x and u we obtaln equations of perturbed
motion n

m m
de Z (af of 00;* af
G2t D) nt g utetinu (4)
dt = oy, e dw; dy; Py do;

where derivatives are computed along the motion y = py*(t) ; ¢(¢, », u)
designates terms the order of which with respect to x and u is uniformly

higher than first in ¢ for 0<? Koo , 1.e. we assume that the following
inequality 1s fulfilled

lg (2 W[ <N 2]+ [ull™® (V=const>>0, a=const>0 (5
Symbol |lg|| designates Euclidean norm of vector ¢ == {gy, ..., ¢y}

fql== Vq13+...+qkz

If for y = 0 the zeroth solution of system (4) i1s unstable, the problem
of stabilizatiqn of motion (1) arises, i.e. the problem of selecting such a
function u(%¢, x) that on substitution of this function in (%) the zeroth
solution x = O would be asymptotically stable according to Liapunov [1].
Thus we shell examine the following system:

de/dt =AW 2+ B (@) u+ g (¢, 2z, u) (6)

where A(t) is an n xn matrix, pB(¢) is an n X m matrix, u is m=~vector
and ¢ 1is a vector-function which satisfies ilnequality (5)., In detailed

1269



1270 N.G. Bulgakov and N.N. Krasovskil

notation system (6) has the form

n ™
dx; Y o1 p
T= 2t Dby Wut gt (=1, (7)
i1 k=1
Together with the complete system {6) we shall examine the system of first
approximation
deldt=A{)z+B({Hu (8)

We assume here that elements a,,{¢) and 3,, () of matrices 4(t) and
B{t) have time derivatives da,,/dt and db,,/ét . We limit ourselves to
the examination of the case where for each fixed value ¢ = T = const > 0
the rank of the matix

V={B,AMB),... A" (1) B (1)} {9)
r(Vy=n (10)

Sufficlent conditions will be established below for which the unperturbed
motion of system {6) 1is stabilized by linear control

is equal to (n)

kid
u=P(t)z, tor w(t,x)= Y p{t)r; (k=1,...,m) (1)
i=1
independently of members @{t, x, u) .
Let us examine matrix (9). We select any n columns 1 from this matrix
and construct the quadratic form from some variable 1,

n
oA = ) P (@19 () ady (12)
i,j=1
Here the symbol (I (1):14%(1))  designates the scalar product of vectors

1 and A9, The form (12) will play a fundamental role in the criterion of
stabilization established below.

Theorem . If for any E;;() in matrix (8) it 1is possible to select
n  linearly independent columns ;” ;™ 8o that the quadratic form (12)
should be positive definite, then we can find a constant y > 0 such that
when inequalities
day; (¢) | by (2)
dt ST l T <T

are satisfied, the unperturbed motiou of system {6} can be stadbilized by the
linear control (11) independently of terms 0{t, x, u) .

Proof . Let us examine the system with constant coefflcients
dr/dt=A (W) z+B(Mu (14)

where T >0 1s a fixed number. This system satisfies the condition of sta~-
bilization given in Theorem 4.1 [2] {see also papers [3 to 5]). In fact,
the space {¥#°] which 1s mentioned in Theorem 4.1, colncides ageording to
(10) with the space {x;]} and thus all elgenvectors Sy angd Sy of matrix
A{71) in case of 1ts simple structure or vectors 7(“ and 1(k) ig the general
case (see [ 2], pp.997 to 999) automatically fall into space {(W'}. Conse-
quently, by virtue of Theorem 4.1 a linear control exists

u(t,z)=P{(7) z (15)

such that for every T:>0 the trivial solution of the system of linear
equations with constant coefficlents

dz/dt=A{(t)z2+B P = (16)

will be automatically stable.

According to [6] (p.62) a positive definite Liapunov's function exlsts
for asymptotically stable system (16)

(13)
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n

v(T,7) = 2 ;i (%) z;2; £%))
such that n=l
dEsW)  __ §, _
(T)(w gl z2 (1) (* = const) (18)

Coefficlents of this function c, () , as is well known, are computed
from conditions (18). For determination of these coeffricients({6] pp.57-66)
a linear system of algebralc equations which depend on a.,(1), ¥
Py, (1) 1s obtained.

Here 1t is important to note the following. Control (15) under the con-
dition of positive definiteness of form (12), can be selected so that matrix
P(7) will be uniformly bounded for T > 0, while form (17) in this case will
have bounded coefficlients for all 71> 0 and will be positive definite uni-
formly with respect to T . The validity of these statements is derived on
the basls of lnown estimates of control theory of linear systems (8). 1In
this connection values p,,(t) can be computed by solving the problem of
analytical design of the control for system (16) [7] (see note 3.3 [2],p.99%).
Then we can select a control u(T, x) = P(T)x so that for motions of systems
{(16), the following inequalities

Tz ()< Bl (t6) )~ (@, B = const, @ >0, § > 0)
would be satisfled uniformly with respect to T .

Now we compute the derivative duv/dt by virtue of system (16) assuming
T 1in quadratic form (17) and in system (16) to be a variable quantity equal
to t . We have

. (T) and

(dv (t = (t))) - (dv (t, z (1)
(16

dv (L, z (1) o _ . dag; (1)
dt dt )(m)+——_ ( 2 —g—e)  19)

ot 3 - Tt

s J=

As was noted above, quantities g
coefficlents of which depend on a,
ditlon of positive definiteness of form 12) the determinant A of this
system is uniformly different from zero [8], i.e.

JAI>v (v= const, v>0)

It follows from this that if derivatives da;(t)/dt dby (t)/dt ana
dPy; (t)/dt are small, then derivatives doy;(¢)’/ dt will also be small. How-
ever, quantities da;(t)/dt and dbj (1) /dt are selected small according to
condition (13). Sma2llness of quantities dpy; () /dt also follows from small-
ness of quantities da;;(t)/d¢ and db,.(t)/d; . In fact, as was noted above,
quantities p,,(t) can’be computed bj solving the problem of analytical
design of the control [7] for system (14). It follows from the theory of
this problem that under the condition of positive-definiteness of quadratic
form (12), thé quantities dpy; (t) / dt exist and are small if only the quanti-
ties da;i(t)/dt and gb,, (1)/dt are small.

Thus the second term in (19) can be made small in comparison to the first
by selection of the quantity y > 0 ., It follows from this that the deriva-
tive (dv{(t, z () / dt) g for sufficlently small y , 1s a negative definite
quadratic form from x,. Consequently the quadratic form v(¢, x), defined
in (17), satisfles the following conditions:

,§T) are computed from linear equations,
tT } b,,(7) and p,,;(7). For the con-

alzf <ot 2) <alzlp, | <elzl
1

Here ¢,, ¢z and ¢, are constants independent of t . The derivative of
this function (dv/ d”(ﬂ for uy = P(t)x 4s a negative~definite function.

We construct the derivative from the form v(t¢, x) by virtue of the com-
plete system (6) for ¥ = P(t)x .
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We have
n
{ dv > (dv ) + v 9
vy (% P g ¢, z, u) (20)
( dt ® dt @ E} Oz,

By virtue of uniform boundedness of partial derivatives 3v/ax,, the
quantity (20) is also a negative definite function for sufficiently small
norm x| , and consequently for u = P(t)x , system (6) will be astmptotic-
ally stable independently of terms ¢ {t X, %) in accordance with Liapunov's
theorem [1]). Therefore control y = }3 ts.x stabllizes the system. The theo-
rem is proved.
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